Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Diseases ; 11(2)2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2305991

ABSTRACT

The COVID-19 pandemic has generated worldwide research efforts to provide knowledge about the disease. Yet little is known about how Ghana contributed to this critical knowledge production. This scientometric analysis was conducted to ascertain Ghana's COVID-19 research output within the African context to gain understanding and identify potential future directions. The study retrieved relevant research, spanning 2019 to 2022, from the Scopus database in December 2022. The retrieved data were assessed using various established indices, including collaboration patterns, productive institutions, citation patterns, and major research sponsors, among others. Ghana came seventh in Africa with a total of 1112 publications. For international collaborations, the United States and the United Kingdom were the major partners, while South Africa was the main African collaborator with Ghana. Out of the top 21 most productive authors, 85.7% were males and 14.3% were females, demonstrating a great gender gap in research output in Ghana. Although Ghana has made some contributions to the global COVID-19 research output, there are few intra-continental research collaborations, which limits Africa's overall research output. Our study demonstrates a critical need for the Ghanaian government to prioritize research and funding and address barriers to women's research productivity.

2.
Heliyon ; 2023.
Article in English | EuropePMC | ID: covidwho-2252907

ABSTRACT

The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.

3.
Heliyon ; 9(3): e13795, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2252908

ABSTRACT

The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.

4.
American Anthropologist ; 123(2):414-415, 2021.
Article in English | ProQuest Central | ID: covidwho-2152597

ABSTRACT

Four questions are posed to an anthropologist concerning the COVID-19 pandemic.

5.
International Review of Applied Economics ; : 1-28, 2022.
Article in English | Taylor & Francis | ID: covidwho-1671806
6.
Respir Res ; 21(1): 154, 2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-1331943

ABSTRACT

Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanisms that mediate toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChRα7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lung tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased SARS-Cov-2 Covid-19 ACE2 receptor, whereas nAChRα7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8 and MMP9, were altered both at the protein and mRNA transcript levels in female and male KO mice, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChRα7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin, significantly in a sex-dependent manner, but without the direct role of nAChRα7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChRα7 in a sex-dependent manner.


Subject(s)
Coronavirus Infections/epidemiology , Electronic Nicotine Delivery Systems , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia/metabolism , Vaping/adverse effects , alpha7 Nicotinic Acetylcholine Receptor/genetics , Angiotensin-Converting Enzyme 2 , Animals , Blood Gas Analysis , Blotting, Western , Bronchoalveolar Lavage Fluid , COVID-19 , Cytokines/analysis , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pandemics , Pneumonia/physiopathology , Random Allocation , Reference Values , Role , Severe Acute Respiratory Syndrome/epidemiology , Signal Transduction/genetics
7.
Roeker, L. E.; Scarfo, L.; Chatzikonstantinou, T.; Abrisqueta, P.; Eyre, T. A.; Cordoba, R.; Prat, A. M.; Villacampa, G.; Leslie, L. A.; Koropsak, M.; Quaresmini, G.; Allan, J. N.; Furman, R. R.; Bhavsar, E. B.; Pagel, J. M.; Hernandez-Rivas, J. A.; Patel, K.; Motta, M.; Bailey, N.; Miras, F.; Lamanna, N.; Alonso, R.; Osorio-Prendes, S.; Vitale, C.; Kamdar, M.; Baltasar, P.; Osterborg, A.; Hanson, L.; Baile, M.; Rodriguez-Hernandez, I.; Valenciano, S.; Popov, V. M.; Garcia, A. B.; Alfayate, A.; Oliveira, A. C.; Eichhorst, B.; Quaglia, F. M.; Reda, G.; Jimenez, J. L.; Varettoni, M.; Marchetti, M.; Romero, P.; Grau, R. R.; Munir, T.; Zabalza, A.; Janssens, A.; Niemann, C. U.; Perini, G. F.; Delgado, J.; San Segundo, L. Y.; Roncero, M. I. G.; Wilson, M.; Patten, P.; Marasca, R.; Iyengar, S.; Seddon, A.; Torres, A.; Ferrari, A.; Cuellar-Garcia, C.; Wojenski, D.; El-Sharkawi, D.; Itchaki, G.; Parry, H.; Mateos-Mazon, J. J.; Martinez-Calle, N.; Ma, S.; Naya, D.; Van der Spek, E.; Seymour, E. K.; Vazquez, E. G.; Rigolin, G. M.; Mauro, F. R.; Walter, H. S.; Labrador, J.; De Paoli, L.; Laurenti, L.; Ruiz, E.; Levin, M. D.; Simkovic, M.; Spacek, M.; Andreu, R.; Walewska, R.; Perez-Gonzalez, S.; Sundaram, S.; Wiestner, A.; Cuesta, A.; Broom, A.; Kater, A. P.; Muina, B.; Velasquez, C. A.; Ujjani, C. S.; Seri, C.; Antic, D.; Bron, D.; Vandenberghe, E.; Chong, E. A.; Lista, E.; Garcia, F. C.; Del Poeta, G.; Ahn, I.; Pu, J. J.; Brown, J. R.; Campos, J. A. S.; Malerba, L.; Trentin, L.; Orsucci, L.; Farina, L.; Villalon, L.; Vidal, M. J.; Sanchez, M. J.; Terol, M. J.; De Paolis, M. R.; Gentile, M.; Davids, M. S.; Shadman, M.; Yassin, M. A.; Foglietta, M.; Jaksic, O.; Sportoletti, P.; Barr, P. M.; Ramos, R.; Santiago, R.; Ruchlemer, R.; Kersting, S.; Huntington, S. F.; Herold, T.; Herishanu, Y.; Thompson, M. C.; Lebowitz, S.; Ryan, C.; Jacobs, R. W.; Portell, C. A.; Isaac, K.; Rambaldi, A.; Nabhan, C.; Brander, D. M.; Montserrat, E.; Rossi, G.; Garcia-Marco, J. A.; Coscia, M.; Malakhov, N.; Fernandez-Escalada, N.; Skanland, S. S.; Coombs, C. C.; Ghione, P.; Schuster, S. J.; Foa, R.; Cuneo, A.; Bosch, F.; Stamatopoulos, K.; Ghia, P.; Mato, A. R.; Patel, M..
Blood ; 136:14, 2020.
Article in English | Web of Science | ID: covidwho-1088505
8.
Journal of Management Information and Decision Science ; 23(5):612-618, 2020.
Article in English | Scopus | ID: covidwho-1049413

ABSTRACT

Since the mass outbreak of the novel coronavirus disease (COVID-19), countries and world economies have been brought to their knees. Developed and developing economies, multinationals, conglomerates, index funds, global stock markets have recorded unprecedented losses over the course of the pandemic period. This has led to a slowdown in economic growth and some fear that if it persists and is not contained effectively, the world could be looking at a global recession. This paper hopes to look into the impact of the novel COVID-19 virus on the global economy, it's effects, what steps are being taken and future prospects. © 2020. All Rights Reserved.

10.
Front Pharmacol ; 11: 584637, 2020.
Article in English | MEDLINE | ID: covidwho-805468

ABSTRACT

BACKGROUND: Aging is one of the key contributing factors for chronic obstructive pulmonary diseases (COPD) and other chronic inflammatory lung diseases. Here, we determined how aging contributes to the altered gene expression related to mitochondrial function, cellular senescence, and telomeric length processes that play an important role in the progression of COPD and idiopathic pulmonary fibrosis (IPF). METHODS: Total RNA from the human lung tissues of non-smokers, smokers, and patients with COPD and IPF were processed and analyzed using a Nanostring platform based on their ages (younger: <55 years and older: >55 years). RESULTS: Several genes were differentially expressed in younger and older smokers, and patients with COPD and IPF compared to non-smokers which were part of the mitochondrial biogenesis/function (HSPD1, FEN1, COX18, COX10, UCP2 & 3), cellular senescence (PCNA, PTEN, KLOTHO, CDKN1C, TNKS2, NFATC1 & 2, GADD45A), and telomere replication/maintenance (PARP1, SIRT6, NBN, TERT, RAD17, SLX4, HAT1) target genes. Interestingly, NOX4 and TNKS2 were increased in the young IPF as compared to the young COPD patients. Genes in the mitochondrial dynamics and quality control mechanisms like FIS1 and RHOT2 were decreased in young IPF compared to their age matched COPD subjects. ERCC1 and GADD45B were higher in young COPD as compared to IPF. Aging plays an important role in various infectious diseases including the SARS-CoV-2 infection. Lung immunoblot analysis of smokers, COPD and IPF subjects revealed increased abundance of proteases and receptor/spike protein like TMPRSS2, furin, and DPP4 in association with a slight increase in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor ACE2 levels. CONCLUSIONS: Overall, these findings suggest that altered transcription of target genes that regulate mitochondrial function, cellular senescence, and telomere attrition in the pathobiology of lung aging in COPD and IPF is associated with alterations in SARS-CoV-2 ACE2-TMPRSS2-Furin-DPP4 axis as pharmacological targets for COVID-19.

11.
Res Sq ; 2020 Jun 15.
Article in English | MEDLINE | ID: covidwho-671013

ABSTRACT

Aging is one of the key contributing factors for chronic obstructive pulmonary diseases (COPD) and other chronic inflammatory lung diseases. Cigarette smoke is a major etiological risk factor that has been shown to alter cellular processes involving mitochondrial function, cellular senescence and telomeric length. Here we determined how aging contribute to the alteration in the gene expression of above mentioned cellular processes that play an important role in the progression of COPD and IPF. We hypothesized that aging may differentially alter the expression of mitochondrial, cellular senescence and telomere genes in smokers and patients with COPD and IPF compared to non-smokers. Total RNA from human lung tissues from non-smokers, smokers, and patients with COPD and IPF were processed and analyzed based on their ages (younger: <55 yrs and older: >55 yrs). NanoString nCounter panel was used to analyze the gene expression profiles using a custom designed codeset containing 112 genes including 6 housekeeping controls (mitochondrial biogenesis and function, cellular senescence, telomere replication and maintenance). mRNA counts were normalized, log2 transformed for differential expression analysis using linear models in the limma package (R/Bioconductor). Data from non-smokers, smokers and patients with COPD and IPF were analyzed based on the age groups (pairwise comparisons between younger vs. older groups). Several genes were differentially expressed in younger and older smokers, and patients with COPD and IPF compared to non-smokers which were part of the mitochondrial biogenesis/function (HSPD1, FEN1, COX18, COX10, UCP2 & 3), cellular senescence (PCNA, PTEN, KLOTHO, CDKN1C, TNKS2, NFATC1 & 2, GADD45A) and telomere replication/maintenance (PARP1, SIRT6, NBN, TERT, RAD17, SLX4, HAT1) target genes. Interestingly, NOX4 and TNKS2 were increased in the young IPF as compared to the young COPD patients. Genes in the mitochondrial dynamics and other quality control mechanisms like FIS1 and RHOT2 were decreased in young IPF compared to their age matched COPD subjects. ERCC1 (Excision Repair Cross-Complementation Group 1) and GADD45B were higher in young COPD as compared to IPF. Aging plays an important role in various infectious diseases. Elderly patients with chronic lung disease and smokers were found to have high incidence and mortality rates in the current pandemic of SARS-CoV-2 infection. Immunoblot analysis in the lung homogenates of smokers, COPD and IPF subjects revealed increased protein abundance of important proteases and spike proteins like TMPRSS2, furin and DPP4 in association with a slight increase in SARS-CoV-2 receptor ACE2 levels. This may further strengthen the observation that smokers, COPD and IPF subjects are more prone to COVID-19 infection. Overall, these findings suggest that altered transcription of target genes that regulate mitochondrial function, cellular senescence, and telomere attrition add to the pathobiology of lung aging in COPD and IPF and other smoking-related chronic lung disease in associated with alterations in SARS-CoV-2 ACE2-TMPRSS2-Furin-DPP4 axis for COVID-19 infection.

12.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-35347.v1

ABSTRACT

Aging is one of the key contributing factors for chronic obstructive pulmonary diseases (COPD) and other chronic inflammatory lung diseases. Cigarette smoke is a major etiological risk factor that has been shown to alter cellular processes involving mitochondrial function, cellular senescence and telomeric length. Here we determined how aging contribute to the alteration in the gene expression of above mentioned cellular processes that play an important role in the progression of COPD and IPF. We hypothesized that aging may differentially alter the expression of mitochondrial, cellular senescence and telomere genes in smokers and patients with COPD and IPF compared to non-smokers. Total RNA from human lung tissues from non-smokers, smokers, and patients with COPD and IPF were processed and analyzed based on their ages (younger: <55 yrs and older: >55 yrs). NanoString nCounter panel was used to analyze the gene expression profiles using a custom designed codeset containing 112 genes including 6 housekeeping controls (mitochondrial biogenesis and function, cellular senescence, telomere replication and maintenance). mRNA counts were normalized, log2 transformed for differential expression analysis using linear models in the limma package (R/Bioconductor). Data from non-smokers, smokers and patients with COPD and IPF were analyzed based on the age groups (pairwise comparisons between younger vs. older groups). Several genes were differentially expressed in younger and older smokers, and patients with COPD and IPF compared to non-smokers which were part of the mitochondrial biogenesis/function (HSPD1, FEN1, COX18, COX10, UCP2 & 3), cellular senescence (PCNA, PTEN, KLOTHO, CDKN1C, TNKS2, NFATC1 & 2, GADD45A) and telomere replication/maintenance (PARP1, SIRT6, NBN, TERT, RAD17, SLX4, HAT1) target genes. Interestingly, NOX4 and TNKS2 were increased in the young IPF as compared to the young COPD patients. Genes in the mitochondrial dynamics and other quality control mechanisms like FIS1 and RHOT2 were decreased in young IPF compared to their age matched COPD subjects. ERCC1 (Excision Repair Cross-Complementation Group 1) and GADD45B were higher in young COPD as compared to IPF. Aging plays an important role in various infectious diseases. Elderly patients with chronic lung disease and smokers were found to have high incidence and mortality rates in the current pandemic of SARS-CoV-2 infection. Immunoblot analysis in the lung homogenates of smokers, COPD and IPF subjects revealed increased protein abundance of important proteases and spike proteins like TMPRSS2, furin and DPP4 in association with a slight increase in SARS-CoV-2 receptor ACE2 levels. This may further strengthen the observation that smokers, COPD and IPF subjects are more prone to COVID-19 infection. Overall, these findings suggest that altered transcription of target genes that regulate mitochondrial function, cellular senescence, and telomere attrition add to the pathobiology of lung aging in COPD and IPF and other smoking-related chronic lung disease in associated with alterations in SARS-CoV-2 ACE2-TMPRSS2-Furin-DPP4 axis for COVID-19 infection.


Subject(s)
Pulmonary Embolism , Pulmonary Disease, Chronic Obstructive , Pneumonia , COVID-19 , Idiopathic Pulmonary Fibrosis , Lung Diseases , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL